CLARITY technology transforms an intact tissue volume into a fully-assembled, nanoporous, hydrogel form that is both optically transparent and permeable to molecular markers.

A New Revolution In 3D Tissue Imaging

Obtaining high-resolution information from solid tumors, while maintaining the global perspective needed to understand the complex tumor microenvironment, represents a key challenge for preclinical and clinical cancer applications.

Technologies currently utilized for preclinical as well as diagnostic, prognostic, and predictive clinical cancer research and standard of care practice are dependent on 2-dimensional analysis of thin tissue sections (5-10 micron) in the format of formalin fixed paraffin embedded tissue (FFPE).

Cancer diagnosis and prognosis using thin section FFPE tissue suffer from a number of problems:
  • Variable and manual tissue sample prep process
  • High inter-observer variability
  • Limited prognostic value due to sampling limitations
  • No ability to visualize tissue structures

Other technologies utilizing molecular technologies have advanced the preclinical and clinical cancer field, however they suffer from the inability to correlate key quantitative information while maintaining tumor and the surrounding microenvironment architecture and morphology.

A new revolution in 3D volumetric, tissue imaging driven by CLARITY & COLM addresses this challenge.
CLARITY tissue processing is:
  • Single sample tissue processing
  • Nondestructive, slide-free, pathology
  • Lipid cleared, porous hydrogel tissue construct
COLM = CLARITY Optimized Light Sheet Microscopy offers:
  • High resolution over large 2D and 3D fields of view
  • Unprecedented acquisition speed and resolution to visualize and quantify 3D relationships within the microenvironment of diseased tissues

The Clarity Process

CLARITY allows the transformation of intact tissue into a nanoporous, hydrogel-hybridized form that is crosslinked to a three-dimensional network of hydrophilic polymers. This process produces a fully assembled, intact tissue, which is permeable to macromolecules and optically transparent, thus allowing for robust 3-dimensional imaging of subcellular components (DNA, RNA and protein) and heterogeneous cellular interactions within the tumor microenvironment. In the field of neurobiology, this novel platform has demonstrated an unprecedented capability to visualize three-dimensional architecture, connectivity and molecular relationships within neuronal tissues.


COLM (CLARITY Optimized Light Sheet Microscopy) is based on light sheet microscopy, a fluorescence microscopy technique where the sample is illuminated by a laser light-sheet, i.e. a laser beam which is focused only in one direction. As only the observed section is illuminated, this method reduces the photo damage and stress induced on the sample. Also, the optical sectioning capability reduces the background signal and thus creates images with high contrast. Because light sheet microscopy scans samples by using a plane of light instead of a point (as in confocal microscopy), it can acquire images at speeds 100 to 1000 times faster than those offered by point-scanning methods. Historically this method has been limited in resolution to cellular scales; however, COLM (specifically developed for CLARITY samples) has succeeded in enabling subcellular resolution with light sheet even deep within intact tissue.

ClearLight holds exclusively licensed intellectual property to CLARITY & COLM, as well as additional supporting and enabling technologies.

Video Gallery

Human Lung Cancer

Human Breast Cancer

Human Lung Cancer (2)

Mouse kidney

Human Lung Cancer (3)

Human Breast Cancer (2)

Human Lung Cancer (4)

Human Breast Cancer (3)

Human Lung Cancer (5)